疱疹战友论坛

注册

 

发新话题 回复该主题

Nature Nanotechnology:用力学设备检测血液病毒首获成功 [复制链接]

1#
据《自然》杂志网络版近日报道,爱尔兰科学家宣称,他们使用类似微小“跳板”的生物传感器能直接探测液体中的病毒,该发现能改进血液测试的效果,同时也为新药药效提供了一种更灵敏的检测方式。该研究成果发表在最新一期《自然·纳米技术》杂志上。

看起来像“跳板”的微小悬臂仅0.5毫米长、1微米厚,它会对不同的压力作出不同的颤动和弯曲反应。通过测量这些细小木板颤动频率的变化,研究人员将其变成了超灵敏的病毒检测尺。

但这些生物传感器也有许多限制———病毒依附的细胞膜蛋白质很难黏附于这个悬臂,并且当它们被从细胞中移除时,容易停止活动。同时,液体的湿度也会改变频率,所以很多试验只能在空气中进行。爱尔兰应用纳米技术中心的纳米技术学家马丁·和格领导的国际研究团队制造了一个悬臂阵列,探测到了液体中病毒黏附的膜蛋白质。

为了确保大肠杆菌膜蛋白质FhuA(同T5病毒捆绑在一起)不停止活动,和格和同事在大片像膜一样的小泡上再造了FhuA,接着他们将这些小泡喷在悬臂阵列选定的悬臂上,就像印刷过程中的喷墨技术一样。研究人员测量了高频出现的震动变化,也克服了液体湿度的影响。

当阵列被浸没在一个包含T5的液体中时,通过测量悬臂震动频率的变化,研究人员探测到了依附于FhuA的病毒。

和格说:“这是人类首次利用力学设备来检测血液中的病毒。”并表示,这样的生物感应系统只有一个金属箍大小,能够很灵敏地探测血液中的病毒。而且当涂层蛋白质改变形状时,悬臂会弯曲,该感应器也能被用来检测新药物是否能激活某种特定蛋白质。(生物谷Bioon.com)

生物谷推荐原始出处:

Nature Nanotechnology Published online: 18 January 2009 | doi:10.1038/nnano.2008.398

Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors

Thomas Braun1,5, Murali Krishna Ghatkesar2,5, Natalija Backmann3, Wilfried Grange1, Pascale Boulanger4, Lucienne Letellier4, Hans-Peter Lang3, Alex Bietsch3, Christoph Gerber3 & Martin Hegner1

Membrane proteins are central to many biological processes, and the interactions between transmembrane protein receptors and their ligands are of fundamental importance in medical research. However, measuring and characterizing these interactions is challenging. Here we report that sensors based on arrays of resonating microcantilevers can measure such interactions under physiological conditions. A protein receptor—the FhuA receptor of Escherichia coli—is crystallized in liposomes, and the proteoliposomes then immobilized on the chemically activated gold-coated surface of the sensor by ink-jet spotting in a humid environment, thus keeping the receptors functional. Quantitative mass-binding measurements of the bacterial virus T5 at subpicomolar concentrations are performed. These experiments demonstrate the potential of resonating microcantilevers for the specific, label-free and time-resolved detection of membrane protein–ligand interactions in a micro-array format.

1 School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Naughton Institute, Trinity College Dublin, Dublin 2, Ireland
2 California Institute of Technology, Pasadena, California 91107, USA
3 National Centre of Competence for Research in Nanoscience, Institute of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
4 Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR CNRS 8619, Université Paris-Sud XI, 91405 Orsay, France
分享 转发
!!!
TOP
发新话题 回复该主题